October 2008


This world-changing suggestion starts, as all good things should, with the Cheeky Girls. Or more accurately Lembit Opik, the Lim Dem MP who rose into the public consciousness after getting engaged to one of the Romanian lovelies in a publicity stunt. Recently Mr Opik rode a Segway up and down up and down outside the Houses of Parliament, challenging ministers to have him arrested. Why did he want to be arrested? Well currently in the UK, Segways can only be used on private land as they are illegal to use on highways or pavements. However I believe that Segway’s can save the Earth from Climate Change (well a little bit anyway), and I’m going to prove it here.

A Segway

A Segway

So what is a Segway? Well, if you haven’t come across them, they’re a bit like an electric stand up scooter, carrying one person at 12mph for up to 24 miles.  As a guide in the UK, they cost £4,300 including VAT. Hailed as a revolution in transport, they’re yet to catch on in the UK mainly due to their legal status and the still remaining stigma of the Sinclair C5, the last comparable electric vehicle. Segway themselves expected to sell 40,000 of them a year, but in the last 6 years only about 30,000 have been shifted in total.

Anyway, back to the point. How much CO2 in g/km is a Segway responsible for? Well, based on an estimated battery capacity of 0.8kwh, a full charge (and range of 24 miles) is about 0.42 kg of CO2, which being a little more realistic with a range of 20 miles works out at 13 g/km. Which is quite impressive if you compare it to taking the Tube (52.6 g/km), National Rail (60.2 g/km), Bus (94.3 g/km) or even the average Car (160 g/km).

So in carbon terms alone riding a Segway to work would produce less than 15% of the CO2 that taking the Bus does.

How about speed? 12 mph isn’t fast is it? Well in London the average bus makes headway at just 8mph, the average tram 16 mph and tube 18 mph. So 12 mph isn’t that bad at all.

How about range then? Well, taking a London-centric view again, the Segway would get you from Croydon to the middle of London and back on a single charge which is probably further than you’d actually want to travel.

OK then, biggest issue is cost. £4,300 is very expensive for a battery with wheels. Well taking the example of a bus again, let’s say a new one costs £125,000. Well, that would buy you almost 30 Segways. Take into account the cost of driver’s salaries and other running costs of about the same again every year. Assuming you could pick up and drop off Segways at bus stops along the lines of the Velib in Paris (and they were evenly distributed around a city), then realistically after 2 years, you will have paid for a Segway for every passenger (90) on an average bus.

Or from the commuter’s point of view, an annual zone 1-4 Travelcard costs £1,384. That’s 3 years and 2 months before you start saving money on your travelcard. And from then on, you’re saving £1,369 a year on travel costs. (They cost about 7p to completely recharge every day that’s £15 a year in “fuel” costs.)

So there you go. For a typical London commuter doing an 8 mile commute, a Segway would save about 200kg from their carbon footprint every year.

And this beautiful Utopian vision is all thanks to the Cheeky Girls.

According to Autocar/ Clean Green Cars, the average CO2 emissions for new cars now stands at 156.6g/km – that’s 7.4g/km less than a year ago. And at that rate of decline manufacturers are going to reach the EU’s proposed 130g/km target by 2012.

That’s great news. What’s even better is that if you continue this trend past 2012, then by 2030 we’re going to be driving cars which actually burn petrol / diesel and remove CO2 from the atmosphere as if by magic. A brave new world, I’m sure you’ll agree.

Magical Cars in 2030

Magical Cars in 2030

Or it might just be the case that most cars have improved by a more realistic 2.5-3%, but people have stopped buying big luxury cars and 4x4s (sales dropped by 40%-ish for each). Sadly at some point we’re going to run out of people who are going to stop buying 4x4s as they will have already stopped. And at that point, we’re just going to revert to a more 2.5%-3%. And forecasting 4 years into the future, based on 2 data-points is a dangerous game.

Speed-bump, road hump, speed ramp or sleeping policemen. Let’s face it by any name they are the bane of urban driving (unless of course you make your living selling replacement shock absorbers). They’re a hassle, damage cars and cause urbanites to drive otherwise unnecessary 4x4s (in my experience anyway). Yes, average speeds are reduced, but so is your attention of what’s up ahead as you’re trying not to clout your exhaust on that unnecessary piece of road calming. Other complaints made against them are that they slow down emergency services (endangering lives), they are particularly unhealthy for people with back or neck pain and create noise for local residents.

Speed Humps

Speed Humps

But I can add another one, that they’re giving the poor Polar Bears an early bath. Yup, that speed bump round the corner on Mornington Close is directly responsible for the increasing popularity of bear-centric swimming lessons at the North Pole. So let me tell you how….

The AA (Automobile Association) did a bit of research on fuel consumption for cars at the Millbrook Proving Ground and found that a typical mid-size car running at a constant 30 mph did 58 mpg. However a car slowing down and speeding up for speed bumps only did 31 mpg. Put that into carbon figures* for a petrol car** and you get 113 g/km of CO2 at a constant 30mph, or 211 g/km over speed bumps. So a kilometer of road with speed bumps creates an extra 0.1kg of CO2 for every single car that travels it.

For argument’s sake, lets say this km of road has on a average a car going each way down it every minute during the day and night***. In a year, that means a single stretch of road creates an extra 103 tonnes of unnecessary CO2 per year. We’re making estimates here, but if that km of road has 10 of the UK’s estimated 100,000 speed humps, then speed bumps in Britain are responsible for a colossal 1.03 million tonnes of CO2 per year. That’s about the same as the total carbon footprint of the 830,000 residents of Fiji, or almost twice that of Greenland. Ouch.

Fiji

Fiji

You can console yourself that as a UK taxpayer, based on the estimate that 50 standard humps on three or four connecting residential streets costs about £150,000. So the UK speed hump population cost us £300 million pounds. Which is about what Newcastle United would cost you if you wondered up to St James’ Park with a really big chequebook this morning.

*Clear research

** A diesel car is actually worse with 128 v 240 g/km

*** More in the day and less at night of course

More information here.