Badger Impressionist

Badger Impressionist

It’s looking more and more likely that the government’s resident badger impressionist, Alistair Darling, is going to announce on April 22nd that old cars (over 10 years) scrapped when a new car is bought will get the owner a £2,000 incentive. Other European countries have implemented similar schemes – in Germany, for example, car sales increased by 40% in March compared with a year earlier.

Compare that with the UK where new car sales fell again in March with new registrations down 30.5 percent against March 2008. And assumming a new car typically costs about £16,000 so the government won’t even be out of pocket (VAT alone is £2,400 before road tax etc), so why is this idea straight from the “MG Rover” department of naivity and idiocy?

Fuel Economy / CO2

New cars are more efficient than older cars. Heavier maybe, but more efficient. A 2.0 manual petrol Ford Focus in 2000 produced 204g/km of CO2. A 2007 model produces 169g/km. Progress indeed.

However, manufacturers are also getting much better at tuning their car’s to perform well in the standard EU test cycle. With modern fuel injection systems, it’s simple to tune a car for ecomony at test speeds, yet still be able to publish good horsepower figures for selling cars. So anyone who believed we’ve really seen a true 17% improvement in CO2 for Ford Foci in 7 years is kidding themselves.

The SMMT shows that the average g/km of new cars sold in the UK between 1999 and Q2 2008 has dropped from 190 g/km to just 160 g/km today. Very admirable, however we need to remember these are “new” cars. And in 1999 people were buying 4x4s like hot cakes. Today though, the SUV / 4×4 has become ostracised from society and sales have fallen off a cliff. In fact the only area of the car market that’s growing is small cars, and they always have a low g/km figure. So of those 30g/km reduction, probably half of it is as a result of cars becoming more efficient, rather than an overall shift in buying trends away from 4x4s to smaller cars.
New Car CO2 in the UK

We also need to remember the CO2 required to build the car. There are a variety of sources for this, from the energy required to build the car (welding / pressing etc), the energy required for production of parts from raw materials and even the footprint required to scrap and recycle a vehicle. The SMMT (Society for Motor Manufacturers and Traders) gives an official figure of about a tonne of CO2 for this whole process. This is widely believed to be far too low.

So let’s say that 1000kg of CO2 is created building a new car, that’s 1,000,000 g of CO2. And lets say that 30g/km is actually saved by getting a newer, smaller, more efficient car through the scrappage scheme. To offset the impact of manufacturing would take a minimum of 20,000 miles of driving, or almost one complete lap of the earth.

Another source is Professor Julia King, vice-chancellor of Aston University who for the Governmenet calculated that 85% of a car’s CO2 is from fuel , 10% production and 5% destruction. In the simplest terms that means owning one car is 8% more CO2 efficient than owning 2 cars over the same period.
(10%+85%+85%+5% v 10%+85%+5%+10%+85%+5%)

Economy and Jobs

There is no doubt that the economy is the primary focus here, and the government are desperately trying to shore up what remains of the British motor industry. However, 85% of the cars sold in the country are imported from abroad. So if you were really trying to help the British industry, you’d be better taking the protectionist route and giving a subsidy just for British built vehicles of….£13,333. And we should also remember that evidence in Germany has shown people are buying smaller cars (for example the VW Polo – ironically built for VW in Spain), and in the UK we manufacture just 2 small cars, the Mini and the Nissan Micra, which together make up just 5% of the UK market. So most of the public money spent will benefit other nations, rather than our own motor industry.
Electric Mini
And what about the miriad of garages and parts manufacturers who keep the older cars running? 95% are based in the UK, and the plethora of new cars on the road will put many more of them out of business.
Made in Britain
Depreciation

Here’s the kicker with new cars. Some cars can loose 50% of their value in the first year of registration. And this is only going to get worse – what is the market for a 1 year old car going to be like if you can get £2,000 off a new one?

And your £2,000 saving? The moment you drive off the forecourt that will be lost in depreciation anyway.

Time Lag

And this is the big one that everyone appears to have missed. This is not a scheme that can last forever, as there is no reason why the government should subsidise one industry (making up a relatively small part of our economy nowadays) while others feel the pain of a recession. All it will do is create a “Christmas / January Sales” effect pushing the problem down the line where everyone shops now, then the market dries up requiring huge discounting just to get any sales at all. No doubt there will be a strong take-up initially (who doesn’t want £2,000 free from the government coffers?), and people are already holding off buying new cars on the expectation of the grant, further hurting the industry (why would you buy now anyway if this is coming?). But what happens next? All the grants are given out, then what? An even worse drought in car sales, that’s what.

The likely end result is that we will have a short term “blip” in sales (just like Germany’s 40% jump), and an even bigger downturn in the long run. This could hurt the industry far more in the long run than the current “dry-patch”…

So what do we do?

So what should we do? Simple, take the estimated £1bn earmarked for the scheme and invest in research and development in the UK. That’s enough to create jobs for 10,000 people for 3 years developing the new technologies required for the drastic advances needed in automotive technology. The sad truth is that the UK’s cost base is never going to be able to complete with developing nations in manufacturing cars in the long term. Maybe today, yes, but not in 10 years. To really help the industry we need to be at the cutting edge of plug in hybrids, lightweight manufacturing techniques and the next generation of vehicles. The internal combustion engine has done well for us for 100 years, but it’s becoming increasingly clear that in it’s current form, it has a finite life span, and if the government wants to have a UK motor industry it needs to get ahead of the curve and be at the cutting edge of the next generation of cars.

2008 Mclaren F1 CarLet’s compare an F1 car to a typical car in the UK which produces about 160 g/km, and over a year (10,000 miles) will produce about 2.56 tonnes of CO2.

According to Wikipedia a typical F1 burns 75 litres of fuel per 100km raced. Based on figures for petrol (which is a reasonable proxy of race fuel), 0.75 litres of fuel burnt per km equates to a CO2 output of 1737 g/km. And over a race season using approx 100,000 litres of the stuff, that’s 231 tonnes of CO2. Per car. And each team has 2. So for fuel alone, before the costs of flying to races, support vehicles and the number of cows required to furnish Max Mosley’s “special” wardrobe, that’s about 463 tonnes per team. I wonder if they carbon offset?

At least they’re becoming hybrids for the 2009 season…

This world-changing suggestion starts, as all good things should, with the Cheeky Girls. Or more accurately Lembit Opik, the Lim Dem MP who rose into the public consciousness after getting engaged to one of the Romanian lovelies in a publicity stunt. Recently Mr Opik rode a Segway up and down up and down outside the Houses of Parliament, challenging ministers to have him arrested. Why did he want to be arrested? Well currently in the UK, Segways can only be used on private land as they are illegal to use on highways or pavements. However I believe that Segway’s can save the Earth from Climate Change (well a little bit anyway), and I’m going to prove it here.

A Segway

A Segway

So what is a Segway? Well, if you haven’t come across them, they’re a bit like an electric stand up scooter, carrying one person at 12mph for up to 24 miles.  As a guide in the UK, they cost £4,300 including VAT. Hailed as a revolution in transport, they’re yet to catch on in the UK mainly due to their legal status and the still remaining stigma of the Sinclair C5, the last comparable electric vehicle. Segway themselves expected to sell 40,000 of them a year, but in the last 6 years only about 30,000 have been shifted in total.

Anyway, back to the point. How much CO2 in g/km is a Segway responsible for? Well, based on an estimated battery capacity of 0.8kwh, a full charge (and range of 24 miles) is about 0.42 kg of CO2, which being a little more realistic with a range of 20 miles works out at 13 g/km. Which is quite impressive if you compare it to taking the Tube (52.6 g/km), National Rail (60.2 g/km), Bus (94.3 g/km) or even the average Car (160 g/km).

So in carbon terms alone riding a Segway to work would produce less than 15% of the CO2 that taking the Bus does.

How about speed? 12 mph isn’t fast is it? Well in London the average bus makes headway at just 8mph, the average tram 16 mph and tube 18 mph. So 12 mph isn’t that bad at all.

How about range then? Well, taking a London-centric view again, the Segway would get you from Croydon to the middle of London and back on a single charge which is probably further than you’d actually want to travel.

OK then, biggest issue is cost. £4,300 is very expensive for a battery with wheels. Well taking the example of a bus again, let’s say a new one costs £125,000. Well, that would buy you almost 30 Segways. Take into account the cost of driver’s salaries and other running costs of about the same again every year. Assuming you could pick up and drop off Segways at bus stops along the lines of the Velib in Paris (and they were evenly distributed around a city), then realistically after 2 years, you will have paid for a Segway for every passenger (90) on an average bus.

Or from the commuter’s point of view, an annual zone 1-4 Travelcard costs £1,384. That’s 3 years and 2 months before you start saving money on your travelcard. And from then on, you’re saving £1,369 a year on travel costs. (They cost about 7p to completely recharge every day that’s £15 a year in “fuel” costs.)

So there you go. For a typical London commuter doing an 8 mile commute, a Segway would save about 200kg from their carbon footprint every year.

And this beautiful Utopian vision is all thanks to the Cheeky Girls.

According to Autocar/ Clean Green Cars, the average CO2 emissions for new cars now stands at 156.6g/km – that’s 7.4g/km less than a year ago. And at that rate of decline manufacturers are going to reach the EU’s proposed 130g/km target by 2012.

That’s great news. What’s even better is that if you continue this trend past 2012, then by 2030 we’re going to be driving cars which actually burn petrol / diesel and remove CO2 from the atmosphere as if by magic. A brave new world, I’m sure you’ll agree.

Magical Cars in 2030

Magical Cars in 2030

Or it might just be the case that most cars have improved by a more realistic 2.5-3%, but people have stopped buying big luxury cars and 4x4s (sales dropped by 40%-ish for each). Sadly at some point we’re going to run out of people who are going to stop buying 4x4s as they will have already stopped. And at that point, we’re just going to revert to a more 2.5%-3%. And forecasting 4 years into the future, based on 2 data-points is a dangerous game.

Speed-bump, road hump, speed ramp or sleeping policemen. Let’s face it by any name they are the bane of urban driving (unless of course you make your living selling replacement shock absorbers). They’re a hassle, damage cars and cause urbanites to drive otherwise unnecessary 4x4s (in my experience anyway). Yes, average speeds are reduced, but so is your attention of what’s up ahead as you’re trying not to clout your exhaust on that unnecessary piece of road calming. Other complaints made against them are that they slow down emergency services (endangering lives), they are particularly unhealthy for people with back or neck pain and create noise for local residents.

Speed Humps

Speed Humps

But I can add another one, that they’re giving the poor Polar Bears an early bath. Yup, that speed bump round the corner on Mornington Close is directly responsible for the increasing popularity of bear-centric swimming lessons at the North Pole. So let me tell you how….

The AA (Automobile Association) did a bit of research on fuel consumption for cars at the Millbrook Proving Ground and found that a typical mid-size car running at a constant 30 mph did 58 mpg. However a car slowing down and speeding up for speed bumps only did 31 mpg. Put that into carbon figures* for a petrol car** and you get 113 g/km of CO2 at a constant 30mph, or 211 g/km over speed bumps. So a kilometer of road with speed bumps creates an extra 0.1kg of CO2 for every single car that travels it.

For argument’s sake, lets say this km of road has on a average a car going each way down it every minute during the day and night***. In a year, that means a single stretch of road creates an extra 103 tonnes of unnecessary CO2 per year. We’re making estimates here, but if that km of road has 10 of the UK’s estimated 100,000 speed humps, then speed bumps in Britain are responsible for a colossal 1.03 million tonnes of CO2 per year. That’s about the same as the total carbon footprint of the 830,000 residents of Fiji, or almost twice that of Greenland. Ouch.

Fiji

Fiji

You can console yourself that as a UK taxpayer, based on the estimate that 50 standard humps on three or four connecting residential streets costs about £150,000. So the UK speed hump population cost us £300 million pounds. Which is about what Newcastle United would cost you if you wondered up to St James’ Park with a really big chequebook this morning.

*Clear research

** A diesel car is actually worse with 128 v 240 g/km

*** More in the day and less at night of course

More information here.

Sports cars. With the exception of the real die-hard lentil sandal wearing environ-mentalists, most people love the idea of a sports car. But admit that at an Islington dinner party and it’s about as PC as claiming you’re Osama Bin Laden’s tennis partner. So can you really have a green sports car?

A blue green car

A blue green car

Arguably the greatest ever car designer was a chap called Colin Chapman who founded Lotus. His most famous quote on making fast cars was “Simplify and add lightness”. He also said “Any car which holds together for a whole race is too heavy”, but let’s not worry about that right now. Chapman believed that to make a car faster you make it lighter. If a car is lighter, then you need smaller brakes, a smaller engine, smaller tyres and so on to get the same level of performance. Which means the car is lighter still, creating a rather nice virtuous circle. You also save fuel costs, for example reducing the weight of a car by 100kg will save you about 900 litres of fuel over it’s lifetime*. That’s about £1,200 at today’s fuel prices. Then again you could also argue that by cutting down on the burgers and losing 10 kg, that would save you £120!

Chapman sadly died in 1982, but I suspect he’s turning in his grave as he sees how bloated and overweight cars have become. What’s frightening is the statistic that although the average weight of a car in Europe is around 1,200 kg, in the US it is 2,000 kg. In the last 25 years since his death, the average weight of cars has increased by 60% in some classes**. And cars on average are getting heavier by 16kg every year***.

Very interesting, but what relevance does this have to CO2 or that lovely sports car you want? Well, to get a car to any speed you need to add energy. 0.5 x the mass of the car x the speed**** (squared) to be exact. Halve the weight of the car, and you halve the energy needed, and halve the fuel required to get to that speed, and the amount of CO2 that gets produced as well.

The same is true with speed as well, except the amount of energy required is squared. So to get 100mph requires 4 times the energy to get to 50mph. Admittedly once you’re at speed, then the aerodynamics play more of a part in how much fuel is burnt (and CO2 that is produced), but lets concentrate on the weight for now.

The trouble with this kinetic energy is that when you slow down it’s changed into heat in the brakes, and it’s gone. This is where regenerative braking comes in. Hybrids and Electric cars can use their motors as generators and save this energy to use again. But they’re still thin on the ground, and unless you have £100,000 for a Tesla Roadster (www.teslamotors.com) you’re out of luck if you want a sports car.

So where does that leave us? Well, funnily enough where we started with Lotus. Generally 2 seater sports cars tend to weigh in between 1,200 and 1,500kg*****. A Lotus Elise in 1996 weighed just 720kg. Even now with airbags, safety equipment and crumple zones it weighs about 900kg. That means it needs a smaller engine, brakes and so on to give the same performance. And that also means less CO2.

As an example, a £140,000 Ferrari 430 will hit 60mph in 4 seconds and produce 420 g/km of CO2. A £32,000 Lotus Elise SC will hit 60 in 4.4 seconds and produce 202 g/km. Which is less than a bog standard Volvo estate.

So there you go. If you want to go green, but still want a sports car, then buy a Lotus.

* http://www.engineeringtalk.com/news/jsr/jsr103.html

** Source: SMMT

*** http://news.bbc.co.uk/1/hi/sci/tech/4922614.stm

**** Speed in metres per second

*****eg: Porsche 911 – 1,400kg, Ferrari 430 – 1,450kg, Porsche Boxster 1,420 kg, Honda S2000 1,274kg

Source: Clear research

A Toyota Prius looking smug yesterday

A Toyota Prius looking smug yesterday

Hollywood loves the Toyota Prius for the green image it purveys to celebrities who have a carbon footprint several times that of the average citizen. Middle England loves the Toyota Prius because over a dinner party they can tell their neighbours they drive a hybrid car. I even like the Toyota Prius because it has raised awareness of hybrid technologies to the world, and brought them into the public consciousness. But is it as green as Toyota claim?

Well, the official CO2 figure for the Prius is 104 g/km, which is equivalent to 62.8 mpg (although Toyota actually claim 65.7 – someone in Japan has their maths wrong there). Now DEFRA in their guidelines to the carbon offsetting quality standard (which is soon to be released) says that reported g/km “factors must be uplifted by 15% to take into account ‘real-world’ driving conditions”. This is not Prius-specific, but does admit that even the government doesn’t believe the CO2 figures they use to tax us on.

With this uplift, the Prius would now be at 119.6g/km (54.6 mpg) which on the face of it seems more reasonable. In independent tests the Toyota has also failed to live up to its claimed efficiency, with What Car (1) recording 52mpg, The Sunday Times (2) recorded 48.1 mpg on a long journey and owners typically reporting between 53 & 54mpg. This gives us a worst of 48.1mpg and a best of 54mpg. Translating that into CO2, that’s 121 to 136 g/km of CO2. So not bad, but still 16-31% higher than Toyota claim (104 g/km) and very misleading.

It’s also worth remembering that a hybrid engine is only beneficial for lots of stop start driving. Running at constant speed there is no benefit over a normal engine, and in fact a disadvantage because you are carrying the extra weight of unused batteries and motor. It’s also worth noting that fuel consumption (and hence CO2) is all about your driving style and not what you drive. 91mpg was achieved by a chap called Will from Warwick Uni (3) in a VW polo Bluemotion, in excess of the claimed 74.3mpg and that included traffic on the M25. A Prius will also cost you more than an equivalent non-hybrid car, and the extra money you spend will take a long time to recoup (if ever). And if you were thinking about buying one to replace your old car, remember that means that somewhere another vehicle needs to be manufactured with all the raw materials that entails.

So, if you want to show people you care about the environment, enjoy looking smug at dinner parties or star in Hollywood blockbusters, then the Prius is the car for you. If you simply want to save fuel & money, lower your carbon footprint and actually do something for the environment, then improve your driving style and follow the example of Will from Warwick.

(1) www.mailonsunday.co.uk/news/article-399074/The-great-mileage-rip-off.html

(2) http://www.timesonline.co.uk/tol/driving/used_car_reviews/article3552994.ece

(3) http://blogs.warwick.ac.uk/nho/entry/911_mpg_in

Source: Clear analysis

Most manufacturersare now obliged to report figures now for CO2 as well as MPG. Its pretty obvious thatthe more fuel you burn for any given distance, the higher the CO2 and the lower the mpg. What most people don’t realise is that there is an exact formula exactly linking the two figures.

It’s far more accurate to measure how much CO2 your car produces using the MPG, because manufacturer figures are always very unreliable. For example a vicar who bought a car rated at 40mpg and does lots of long journeys at 50 mph is likely to get 50+ mpg, whereas a boy racer who spends most of his time with the front wheels spinning is closer to 30 mpg:

  • 30mpg is equivalent to 218g/km (Petrol) & 252 g/km (Diesel)
  • 40mpg is equivalent to 163g/km (Petrol) & 189 g/km (Diesel)
  • 50mpg is equivalent to 130g/km (Petrol) & 151 g/km (Diesel)

But hang on – doesn’t this mean Diesel is less environmentally friendly than petrol? Surely that can’t be true?

Well it is and it isn’t. Every litre of Petrol you burn creates 2.31 kg of CO2, whereas every litre of Diesel produces 2.68kg. However diesel cars tend to be more efficient (because they can run a higher compression ratio mostly) and this offset’s the difference because less fuel is burnt in the first place.

So there you go. And to make it a little bit easier, below is a handy graph which allows you to translate easily between mpg and co2 for any vehicle.

MPG to CO2

MPG to CO2

As a final note, I should point out that for a car to be able to compete with the train as a clean form of transport, it would have to do about 109mpg (~60g/km). Now that is a challenge!

Source: VCA data / Clear analysis

Not a question most of us have asked directly, but when you hear about Toyota Prius this and Lexus hybrid that, do you ever wonder what is the highest producing car on sale in the UK today?

Let me introduce you to the hall of fame, and you won’t be surprised to hear that it is exclusively populated by Italian supercars.

July 2000 – April 2002 – The most inefficient car in the UK was the one and only LAMBORGHINI Diablo, producing a colossal 590g/km of CO2. That’s almost a bag of sugar’s worth of CO2 every mile!

May 2002 – April 2005 – Ferrari were obviously not content to be left in Lamborghini’s wake, and up-ed their game, topping the table with the 456M GTA 2+2, a classic 4 seater producing 570g/km. (However if you did have 4 people that’s only 143 g/km each which is about the same as one person in a Ford Focus!)

May 2005 – September 2005 – Ferrari really show Lamborghini who’s boss with another entry, the mighty Enzo. You had to be invited to buy one by Ferrari, and they were a cool $1m a pop. And at 545g/km surprisingly less than a 456.

October 2005- August 2008 – As the Enzo ceased production it gave Lamborghini a chance to get back in the game with the Murcielago producing a positively respectable 500g/km. And you also may have noticed that over the last 8 years the supercars have (dare I say it) become cleaner? Lamborghini’s top of the range model has gone from 590 to 500 g/km. Have supercars gone all soft and reached for a pair of lentil sandals? Not a chance. In October 2005 Bugatti released the 250mph Veyron and all was right with the world again. Averaging a 596 g/km, at top speed this behemoth will gobble almost 2 gallons of fuel a minute. Doing some shopping? Well through town the Bugatti will officially produce 960 g/km of CO2. To put that in context it is the same as driving 9 and a half VW Polo Bluemotions at the same time. Short of towing a bonfire down the road behind a tractor with a hole in its fuel tank, its pretty hard to produce more CO2 / km than that. 

Of course there are a lot of other factors here, such as NOX levels, particulates, energy required to produce the vehicle, shipping, all the nasty chemicals produced in manufacture and so on, but that would all make this a bit dull.

So the “take-away message” is simple. If you really don’t believe in or care about global warming (and have a bottomless wallet), a Bugatti is the car for you!

The fastest and least efficient car in the world

The fastest and least efficient car in the world

 

 

Source: VCA data / http://www.bugatti-configurator.com/content/pdf/Veyron_en.pdf

So you want to reduce your carbon footprint right? But you still have to get from A to B and back again. So what’s the cleanest way to go in terms of CO2?

The obvious one is to walk or cycle. Both are essentially carbon neutral, though if you were really being pedantic, you could say that the extra effort does make you breathe a bit harder. But its not a lot.

However, what if you have to go a bit further? Out of range of leg power? Your first suggestion might be the bus, maybe a train? Perhaps if you have to drive, then take the Toyota Prius? Well it’s not quite that straightforward, and the results might surprise you…

How clean is your commute?

CO2 g/km by mode of transport

So what does this mean?

Well, if you’re going a long way and want to cut your footprint, don’t bother with the train. Instead give National Express a call and hop on.

And how about occupancy? For example, 2 people on a 50cc scooter would be pretty slow, but at 36 g/km its even cleaner than a coach. 4 people in a VW Polo Bluemotion? Less than 25g/km each. To put that in context, a Bentley Continental GT with 1 person is 410 g/km.

And that cab you took home last night after too many beers? Ouch…

Data Sources / Notes:

1. Sources of data: VCA car fuel data, www.clear-offset.com analysis, DEFRA, TFL, Going Green.

2. Flight figures do not include any form of radiative forcing index.

3. G-Wiz figure is an equivalent CO2 figure if the electricity is produced from the national grid.

4. All bikes are 4-stroke.

Note: This blog is written on behalf of Clear the carbon offset company.

Follow

Get every new post delivered to your Inbox.